对最新的引力波事件,既参与了探测,又解开了宇宙中金、银等超铁元素的产生之谜

这一次,中国没有错过

□据 新华社南京10月16日电

北京时间16日22时,科学家们在多国 宣布成功探测到第一例双中子星引力波事 件,人类首次窥见引力波源头的奥秘。我国 包括南极巡天望远镜AST3-2、国内第一颗 空间X射线天文卫星慧眼望远镜在内的多台 设备参与探测引力波事件,我国科研人员还 借助引力波光谱解开了宇宙中金、银等超铁 元素的产生之谜。

找到宇宙"黄金之源"

"中子星合并是宇宙的'巨型黄 金制造厂',借助引力波探究中子 星,可以让人类窥见金、银等超铁元 素,是如何在宇宙'盛大焰火'中产 生的。"中科院紫金山天文台副研究 员金志平参加的国际团队,通过引 力波光学信号的观测和光谱分析 确定,中子星合并确实是宇宙中 金、银等超铁元素的主要起源地。

2017年8月17日,第4例引力 波事件发生后的第3天,美国"激光 干涉引力波天文台"(LIGO)又发现 一个新的引力波信号 GW170817。与前4例黑洞合并产 生的引力波不同,GW170817是一 个由双中子星合并产生的引力波。 全球约70个地面及空间望远镜从 红外、X光、紫外和射电波等多个波 段开展后续观测。

这其中,也包括中国架设在昆仑 站的南极巡天望远镜AST3-2。身 在南京的中科院南极天文中心的年 轻成员胡镭,是第一个注意到南极巡 天望远镜AST3-2"有情况"的人。

胡镭告诉记者,8月18日中 午,南极团队获知引力波信号准确 方位后,立刻调整巡天望远镜角度, 把望远镜观测角度拉到极限,历时 10天,每天2个小时,终于在预期

坐标内看到了那个宝贵的亮点。中 国在南极抓住了这个机会!

2017年10月18日 星期三 编辑/山军伟 校对/庆栋 组版/关欢

"没看到"也重要

那些"看到"令人狂喜,有的"没 看到"也至关重要。引力波事件发 生时,全球仅有4台X射线和伽马 射线望远镜成功监测到爆发天区, 中国的空间 X 射线天文卫星慧眼 望远镜便是其中之一。

慧眼望远镜是2017年6月15 日从酒泉卫星发射中心发射升空 的。中科院高能物理研究所的专家 说,在参与本次引力波事件探测时, 慧眼望远镜刚刚试运行2个月。

"大家普遍预计,在兆电子伏特 能段,引力波电磁对应体将非常明 亮,而事实上,慧眼望远镜没有探测 到这样的辐射,给出了兆电子伏特 能段的流强上限,说明它的辐射性 质比较复杂,跟理论预言相距甚 远。这同样是具有历史意义的发 现。"中科院高能所慧眼望远镜伽马 暴和引力波电磁对应体研究组负责 人熊少林说。

引力波天文学时代 正在到来

2017年的诺贝尔物理学奖,颁 给了3名为引力波探测做出重要贡 献的美国科学家。引力波天文学的 时代正在到来。

研究人员预测,下一个探测亮 点应该是中子星、黑洞合并产生的 引力波事件。乐观估计,这一激动 人心的发现可能在未来一两年内就 与人类见面。此外,白矮星等天体 合并产生的低频引力波及宇宙开端 大爆炸产生的原初引力波,还有待 进一步探寻。

在这个领域,中国近年来相继 提出"阿里计划""天琴计划"和"太 极计划",在陆地和空间探测中低频 和低频引力波。

在慧眼望远镜的技术基础上, 中国科学院高能物理研究所提出了 专门探测引力波闪的引力波高能电 磁对应体全天监测器项目(GE-CAM),并将其命名为"闪电"。

熊少林介绍,"闪电"不仅能够 同时监测全天随机爆发的引力波 闪,而且具有更低的探测阈值、更高 的监测灵敏度及更好的定位能力, 对引力波闪的综合探测性能远超现 有望远镜。如能顺利立项,这有望 使我国在引力波电磁对应体的探测 研究上达到国际领先水平。

中科院紫金山天文台研究员韦 大明说:"引力波能帮人类洞悉整个 宇宙的起源。如果找到合适的引力 波,人们将有机会为大爆炸等一系 列基本物理假设找到证据。"

洛阳远达 0379-65091888 洛阳市洛龙区开元大道与汇通街 交会处向北300米路西

何未见·探非几